Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man.

نویسندگان

  • J M Miles
  • M W Haymond
  • S L Nissen
  • J E Gerich
چکیده

The present studies were undertaken to assess the relative effects of free fatty acid (FFA) availability, glucagon excess, and insulin deficiency on ketone body (KB) production in man. To determine whether an increase in FFA availability would augment KB production in the absence of insulin deficiency and glucagon excess, plasma insulin and glucagon were maintained at basal concentrations by infusion of somatostatin and exogenous insulin and glucagon, and plasma FFA were increased from 0.32 +/- 0.06 to 1.4 +/- 0.1 mM by a 2.5-h-infusion of a triglyceride emulsion plus heparin. KB production increased fivefold from 2.2 +/- 0.4 to 11.4 +/- 1.2 mumol . kg-1 . min-1, P less than 0.001. To determine whether insulin deficiency would further augment KB production, analogous experiments were performed but the replacement infusion of insulin was stopped. Despite a greater increase in plasma FFA (from 0.26 +/- 0.04 to 1.95 +/- 0.3 mM), KB production increased (from 1.5 +/- 0.3 to 11.1 +/- 1.8 mumol . kg-1 . min-1) to the same extent as in the absence of insulin deficiency. To determine whether hyperglucagonemia would augment KB production beyond that accompanying an increase in plasma FFA and, if so, whether this required insulin deficiency, similar experiments were performed in which the glucagon infusion rate was increased to produce plasma glucagon concentrations of 450-550 pg/ml with and without maintenance of the basal insulin infusion. When basal plasma insulin concentrations were maintained, hyperglucagonemia did not further increase KB production; however, when the basal insulin infusion was discontinued, hyperglucagonemia increased KB production significantly, whereas no change was observed in saline control experiments. These studies indicate that, in man, FFA availability is a major determinant of rates of KB production; insulin does not appear to influence ketogenesis rates by a direct hepatic effect, and glucagon can further augment KB production when FFA concentrations are increased but only in the setting of insulin deficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of insulin and glucagon on ketone-body turnover.

A double-isotope procedure was used to measure the effects of insulin and glucagon on ketone-body production and utilization (i.e. turnover) in the starved rat. Somatostatin was infused during the experiment to suppress the pancreatic release of either hormone. The immediate action of insulin in terms of ketone-body turnover that was most evident was a decreased production of 3-hydroxybutyrate,...

متن کامل

Effect of succinate, fumarate, and oxalacetate on ketone body production by liver slices from non-diabetic and diabetic rats.

The metabolism of fatty acids involves the production of acetyl coenzyme A and its condensation with oxalacetate for complete oxidation in the citric acid cycle. The availability of oxalacetate can determine the extent of metabolism via the Krebs cycle (1). In the presence of a low level of oxalacetate in the liver, fatty acid metabolism should produce an excess of ketone bodies. Previously (2)...

متن کامل

The Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats

Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...

متن کامل

Hormonal control of ketogenesis. Rapid activation of hepatic ketogenic capacity in fed rats by anti-insulin serum and glucagon.

The enhanced capacity for long-chain fatty acid oxidation and ketogenesis that develops in the rat liver between 6 and 9 h after the onset of starvation was shown to be inducible much more rapidly by administration of anti-insulin serum or glucagon to fed rats. After only 1 h of treatment with either agent, the liver had clearly switched from a "nonketogenic" to a "ketogenic" profile, as determ...

متن کامل

Clinical Data Deviation of Weight initial weight from population Initials Age Sex Height Initial Final Difference

A B S T R A C T The role of glucagon in the metabolic adaptation to prolonged fasting in man has been examined. Plasma immunoreactive glucagon was determined during 6-wk fasts and during infusion of exogenous glucagon using an assay which minimized nonpancreatic immunoreactivity. Plasma glucagon concentrations rose twofold to a peak on the 3rd day of fasting and then declined thereafter to a le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 71 6  شماره 

صفحات  -

تاریخ انتشار 1983